Archaeal Mo-Containing Glyceraldehyde Oxidoreductase Isozymes Exhibit Diverse Substrate Specificities through Unique Subunit Assemblies
نویسندگان
چکیده
Archaea use glycolytic pathways distinct from those found in bacteria and eukaryotes, where unique enzymes catalyze each reaction step. In this study, we isolated three isozymes of glyceraldehyde oxidoreductase (GAOR1, GAOR2 and GAOR3) from the thermoacidophilic archaeon Sulfolobus tokodaii. GAOR1-3 belong to the xanthine oxidoreductase superfamily, and are composed of a molybdo-pyranopterin subunit (L), a flavin subunit (M), and an iron-sulfur subunit (S), forming an LMS hetero-trimer unit. We found that GAOR1 is a tetramer of the STK17810/STK17830/STK17820 hetero-trimer, GAOR2 is a dimer of the STK23390/STK05620/STK05610 hetero-trimer, and GAOR3 is the STK24840/STK05620/STK05610 hetero-trimer. GAOR1-3 exhibited diverse substrate specificities for their electron donors and acceptors, due to their different L-subunits, and probably participate in the non-phosphorylative Entner-Doudoroff glycolytic pathway. We determined the crystal structure of GAOR2, as the first three-dimensional structure of an archaeal molybdenum-containing hydroxylase, to obtain structural insights into their substrate specificities and subunit assemblies. The gene arrangement and the crystal structure suggested that the M/S-complex serves as a structural scaffold for the binding of the L-subunit, to construct the three enzymes with different specificities. Collectively, our findings illustrate a novel principle of a prokaryotic multicomponent isozyme system.
منابع مشابه
Glyceraldehyde-3-phosphate ferredoxin oxidoreductase from Methanococcus maripaludis.
The genome sequence of the non-sugar-assimilating mesophile Methanococcus maripaludis contains three genes encoding enzymes: a nonphosphorylating NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR); all these enzymes are potentially capable of catalyzing glyceraldehy...
متن کاملThe crystal structure of the allosteric non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeum Thermoproteus tenax.
The NAD(+)-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) from the hyperthermophilic archaeum Thermoproteus tenax represents an archaeal member of the diverse superfamily of aldehyde dehydrogenases (ALDHs). GAPN catalyzes the irreversible oxidation of d-glyceraldehyde 3-phosphate to 3-phosphoglycerate. In this study, we present the crystal structure of GAPN in com...
متن کاملX-ray structure of the fourth type of archaeal tRNA splicing endonuclease: insights into the evolution of a novel three-unit composition and a unique loop involved in broad substrate specificity
Cleavage of introns from precursor transfer RNAs (tRNAs) by tRNA splicing endonuclease (EndA) is essential for tRNA maturation in Archaea and Eukarya. In the past, archaeal EndAs were classified into three types (α'2, α4 and α2β2) according to subunit composition. Recently, we have identified a fourth type of archaeal EndA from an uncultivated archaeon Candidatus Micrarchaeum acidiphilum, refer...
متن کاملLignin Peroxidase Of
Ligninase is a generic name for a group of isozymes that catalyze the oxidative depolymerization of lignin. Although undoubtedly produced by other lignin-degrading fungi, these isozymes to data have been isolated only from the basidiomycete Phanerochaete chrysosporium Burds. 1,2 These ligninases are extracellular and are produced during secondary metabolism, brought about by nutrient starvation...
متن کاملMulti-Level Kinetic Model Explaining Diverse Roles of Isozymes in Prokaryotes
Current standard methods for kinetic and genomic modeling cannot provide deep insight into metabolic regulation. Here, we developed and evaluated a multi-scale kinetic modeling approach applicable to any prokaryote. Specifically, we highlight the primary metabolism of the cyanobacterium Synechococcus elongatus PCC 7942. The model bridges metabolic data sets from cells grown at different CO2 con...
متن کامل